AI Deployment on the Rise Despite Data Quality Challenges
Across the globe, enterprises are increasingly adopting artificial intelligence (AI), with a recent survey finding that 64.5% of organizations now have AI in production. However, the same survey by Apryse reveals a glaring issue: only 38.1% of these enterprises rate their document data as 'excellent' for AI use. This presents a critical gap in AI readiness that is alarming for business leaders keen to harness the disruptive potential of AI technologies.
The Paradox of Progress: AI Adoption vs. Data Quality
The findings suggest that while AI has cemented its position in the operational landscape of businesses, the infrastructure supporting it—particularly in terms of document data quality—has not kept pace. Traditional data trapped within documents is often messy and inconsistent, posing a significant barrier to effective AI implementation. As Andrew Varley, CPO of Apryse, points out, “AI is no longer experimental, it’s operational,” but many organizations find the document data governance inadequate for leveraging this operational AI effectively.
The Financial Impact of Poor Data Quality
Many enterprises are now facing significant challenges with data quality, as revealed by a complementary survey from Qlik. It shows that 81% of AI professionals report persistent data quality issues, which could jeopardize the ROI of their AI investments. Poor quality data can lead to biased models and unreliable insights, ultimately compromising the stability of businesses. Financially, organizations need to place increased focus on data quality or risk significant waste and liability.
The Role of Document Automation in AI Success
The Apryse survey highlights a vital trend: 82.8% of organizations plan to invest in document automation in the next twelve months. Document automation not only streamlines processes but also enhances data quality for AI readiness. Tools that enable the extraction of structured data from unstructured documents—such as improved table recognition and metadata tagging—will be crucial in bridging the gap. By investing in these tools, organizations can unlock the full potential of their AI deployments.
Asia-Pacific: A Different Story in AI Maturity
While North America remains at the forefront of AI deployment, organizations in Australia and New Zealand are showcasing a surprising leadership in AI infrastructure maturity. These regions are early adopters of data residency rules and have shown a commitment to robust document processing, making them models for other markets. The unique regulatory environment in Oceania—especially in healthcare and financial services—has pushed for solid document-to-data workflows, which may serve as a case study for global enterprises.
Key Strategies for Improving Data Quality
To overcome the data quality challenges, enterprises must develop comprehensive data management strategies. This includes investing in data governance frameworks, ensuring that all stakeholders understand their roles in maintaining data quality, and implementing continuous data validation processes. Furthermore, utilizing smart automation technologies can help to clean and improve data quality, ensuring reliable foundations for AI models. By adopting these practices, organizations can mitigate risks associated with flawed data and enhance the performance of their AI initiatives.
Why Action on Data Quality Matters Now
Companies increasingly recognize the urgency of addressing data quality concerns. A fifth of data professionals believe that without prioritizing data quality, businesses face a crisis that could severely outweigh current investments in AI technology. Organizations must act now not just to safeguard investments but to ensure that AI delivers on its promise of operational efficiency and enhanced customer experiences. As industry leaders explore innovative solutions through AI, a commitment to high-quality data is essential for sustainable success.
In summary, while the surge in AI adoption is promising, it is accompanied by serious challenges related to data quality and governance. Firms that proactively invest in document automation and enhance data quality practices will stand to gain significant competitive advantages in the evolving AI landscape.
Add Row
Add
Write A Comment